资源类型

期刊论文 557

会议视频 13

会议信息 1

年份

2024 1

2023 46

2022 49

2021 60

2020 39

2019 36

2018 40

2017 32

2016 26

2015 19

2014 43

2013 22

2012 22

2011 16

2010 24

2009 21

2008 24

2007 30

2006 1

2005 3

展开 ︾

关键词

绿色化工 9

医院中子照射器I型堆 6

膜分离 5

催化剂 4

核能 4

反渗透 3

渗透汽化 3

碳中和 3

MCNP 2

催化裂化 2

催化裂解 2

先进反应堆 2

医院中子照射器 2

压水堆 2

双极板 2

反渗透膜 2

燃耗 2

纳滤 2

耐氯性 2

展开 ︾

检索范围:

排序: 展示方式:

Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 731-744 doi: 10.1007/s11705-021-2110-6

摘要: Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity. However, its extensive industrial application has been restricted by the low ozone utilization and limited mass transfer of the short-lived radical species. Interlayer space-confined catalysis has been theoretically proven to be a viable strategy for achieving high catalytic efficiency. Here, a two-dimensional MnO2-incorporated ceramic membrane with tunable interspacing, which was obtained via the intercalation of a carbon nanotube, was designed as a catalytic ozonation membrane reactor for degrading methylene blue. Benefiting from the abundant catalytic active sites on the surface of two-dimensional MnO2 as well as the ultralow mass transfer resistance of fluids due to the nanolayer confinement, an excellent mineralization effect, i.e., 1.2 mg O3(aq) mg–1 TOC removal (a total organic carbon removal rate of 71.5%), was achieved within a hydraulic retention time of 0.045 s of pollutant degradation. Further, the effects of hydraulic retention time and interlayer spacing on methylene blue removal were investigated. Moreover, the mechanism of the catalytic ozonation employing catalytic ozonation membrane was proposed based on the contribution of the Mn(III/IV) redox pair to electron transfer to generate the reactive oxygen species. This innovative two-dimensional confinement catalytic ozonation membrane could act as a nanoreactor and separator to efficiently oxidize organic pollutants and enhance the control of membrane fouling during water purification.

关键词: catalytic membrane reactor     catalytic ozonation     nanoconfinement     two-dimensional manganese oxide    

面向绿色化工应用的陶瓷催化膜反应器的设计与制备 Feature Article

张广儒, 金万勤, 徐南平

《工程(英文)》 2018年 第4卷 第6期   页码 848-860 doi: 10.1016/j.eng.2017.05.001

摘要:

催化膜反应器将反应和分离耦合在一个单元,在化工生产中被视为一种绿色的化工新工艺。而在催化膜反应器中采用陶瓷膜可以使膜反应器的应用范围扩展到一些苛刻环境。本文介绍了基于气体分离的致密陶瓷催化膜反应器和基于非均相体系分离的多孔陶瓷催化膜反应器,评述了近10 年两种不同种类的膜反应器的最新进展以及本课题组的相关工作。面向能源、环境领域的应用,对膜反应器的设计、制备及应用展开重点讨论。针对各个膜反应器,从膜及膜反应器构型入手,以典型的催化反应为例,对膜反应器的设计及优化进行详细论述,最后探讨了进一步发展所面临的瓶颈和可能取得突破的方向,以及膜与膜反应器未来发展应重点关注的领域。

关键词: 致密膜     多孔膜     催化膜反应器     气体分离     非均相催化    

Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich

Rongchang WANG, Xinmin ZHAN, Yalei ZHANG, Jianfu ZHAO

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 48-56 doi: 10.1007/s11783-011-0305-7

摘要: Nitrogen removal performance and nitrifying population dynamics were investigated in a redox stratified membrane biofilm reactor (RSMBR) under oxygen limited condition to treat ammonium-rich wastewater. When the loading rate increased from 11.1±1.0 to , the nitrogen removal in the RSMBR system increased from 18.0±9.6 mgN·d to 128.9±61.7 mgN·d . Shortcut nitrogen removal was achieved with nitrite accumulation of about . Confocal micrographs showed the stratified distributions of nitrifiers and denitrifiers in the membrane aerated biofilms (MABs) at day 120, i.e., ammonia and nitrite oxidizing bacteria (AOB and NOB) were dominant in the region adjacent to the membrane, while heterotrophic bacteria propagated at the top of the biofilm. Real-time qPCR results showed that the abundance of gene was two orders of magnitude higher than the abundance of gene in the MABs. However, the gene was always detected during the operation time, which indicates the difficulty of complete washout of NOB in MABs. The growth of heterotrophic bacteria compromised the dominance of nitrifiers in biofilm communities, but it enhanced the denitrification performance of the RSMBR system. Applying a high ammonia loading together with oxygen limitation was found to be an effective way to start nitrite accumulation in MABs, but other approaches were needed to sustain or improve the extent of nitritation in nitrogen conversion in MABs.

关键词: ammonium-rich wastewater     membrane biofilm reactor     nitrification     redox stratification     shortcut nitrogen removal    

Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactorvia the catalytic chemical vapor deposition process

Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 280-289 doi: 10.1007/s11705-017-1635-1

摘要: This article reports the different steps of the design, development and validation of a process for continuous production of carbon nanotubes (CNTs) via catalytic chemical vapor deposition from the laboratory scale to the industrial production. This process is based on a continuous inclined mobile-bed rotating reactor and very active catalysts using methane or ethylene as carbon source. The importance of modeling taking into account the hydrodynamic, physicochemical and physical phenomena that occur during CNT production in the process analysis is emphasized. The impact of this invention on the environment and human health is taken into consideration too.

关键词: carbon nanotubes     catalytic chemical vapor deposition     inclined rotating reactor     industrial process     scaling-up    

Removal of dissolved oxygen from water using a Pd-resin based catalytic reactor

Wenxin SHI, Chongwei CUI, Liye ZHAO, Shuili YU, Xia YUN

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 107-111 doi: 10.1007/s11705-009-0154-0

摘要: The removal of dissolved oxygen (DO) from water was studied experimentally in a Pd-resin base catalyst reactor using purified hydrogen gas as a reducing agent. The effects of various operating conditions, such as hydrogen and water flow rates, height of the catalytic resin bed, temperature, pH value and run time, on the removal of DO, had been studied extensively. The results shows that DO could be removed by the reactor from ppm to ppb levels at ambient temperature. Increases of temperature, H gas rate and the height of the catalytic resin were helpful to improve the DO removal rate. The change of pH value from 4 to 12 resulted in no effect on DO removal. Reaction time was the key factor to control the DO removal efficiency. Only when the reaction time was longer than 2.3 minutes under the experimental conditions, could a very low DO level be achieved.

关键词: dissolved oxygen     palladium     catalytic reactor     hydrogen     resin    

Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1454-y

摘要:

Membrane bioreactor achieved mercury removal using nitrate as an electron acceptor.

关键词: Mercury removal     Oxygen     Ferrous sulfide     Transformation of mercury     Microbial community    

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasmareactor

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-018-1017-z

摘要: In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/ g-Al O catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/ g-Al O catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L , respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/ g-Al O catalyst to effectively decompose O and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/ g-Al O catalyst in plasma significantly decreased the emission of discharge byproducts (NO and O ) and promoted the mineralization of mixed VOCs towards CO . Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.

关键词: Mixed VOCs     HSPBD plasma reactor     Degradation     Catalyst     Relative humidity    

Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aeratedbiofilm reactor

Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1047-6

摘要:

MABR exhibits excellent TN removal performance for treating ROC with low C/N ratio.

Operating conditions should be properly controlled to achieve optimal TN removal.

Denitrifying bacteria and NOB are proved notably inhibited by high salinity stress.

The TN removal rate remains over 70% when the NaCl addition amount is below 20 g/L.

关键词: Membrane-aerated biofilm reactor (MABR)     Salinity     Total nitrogen     Reverse osmosis concentrate    

Hydroxyl radical intensified Cu

Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1281-6

摘要: Abstract • Cu2O NPs/H2O2 Fenton process was intensified by membrane dispersion. • DMAc removal was enhanced to 98% for initial DMAc of 14000 mg/L. • Analyzed time-resolved degradation pathway of DMAc under ·OH attack. High-concentration industrial wastewater containing N,N-dimethylacetamide (DMAc) from polymeric membrane manufacturer was degraded in Cu2O NPs/H2O2 Fenton process. In the membrane-assisted Fenton process DMAc removal rate was up to 98% with 120 min which was increased by 23% over the batch reactor. It was found that ·OH quench time was extended by 20 min and the maximum ·OH productivity was notably 88.7% higher at 40 min. The degradation reaction rate constant was enhanced by 2.2 times with membrane dispersion (k = 0.0349 min−1). DMAc initial concentration (C0) and H2O2 flux (Jp) had major influence on mass transfer and kinetics, meanwhile, membrane pore size (rp) and length (Lm) also affected the reaction rate. The intensified radical yield, fast mass transfer and nanoparticles high activity all contributed to improve pollutant degradation efficiency. Time-resolved DMAc degradation pathway was analyzed as hydroxylation, demethylation and oxidation leading to the final products of CO2, H2O and NO3− (rather than NH3 from biodegradation). Continuous process was operated in the dual-membrane configuration with in situ reaction and separation. After five cycling tests, DMAc removal was all above 95% for the initial [DMAc]0 = 14,000 mg/L in wastewater and stability of the catalyst and the membrane maintained well.

关键词: Ceramic membrane reactor     N     N-dimethylacetamide     Fenton process     Cu2O     Wastewater treatment    

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO

Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE,Hongxing DAI

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 483-495 doi: 10.1007/s11783-013-0595-z

摘要: A novel Ultrasonic Assisted Membrane Reduction (UAMR)-hydrothermal method was used to prepare flower-like Pt/CeO catalysts. The texture, physical/chemical properties, and reducibility of the flower-like Pt/CeO catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), N adsorption, and hydrogen temperature programmed reduction (H -TPR) techniques. The catalytic performance of the catalysts for treating automobile emission was studied relative to samples prepared by the conventional wetness impregnation method. The Pt/CeO catalysts fabricated by this novel method showed high specific surface area and metal dispersion, excellent three-way catalytic activity, and good thermal stability. The strong interaction between the Pt nanoparticles and CeO improved the thermal stability. The Ce ions were incorporated into the surfactant chains and the Pt nanoparticles were stabilized through an exchange reaction of the surface hydroxyl groups. The SEM results demonstrated that the Pt/CeO catalysts had a typical three-dimensional (3D) hierarchical porous structure, which was favorable for surface reaction and enhanced the exposure degree of the Pt nanoparticles. In brief, the flower-like Pt/CeO catalysts prepared by UAMR-hydrothermal method exhibited a higher Pt metal dispersion, smaller particle size, better three-way catalytic activity, and improved thermal stability versus conventional materials.

关键词: three-way catalyst     flower-like     Ultrasonic Assisted Membrane Reduction (UAMR)     Pt nanoparticles    

A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor

Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG

《化学科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 347-356 doi: 10.1007/s11705-013-1347-0

摘要: The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heterogeneous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.

关键词: ventilation air methane     reverse flow reactor     lean methane combustion     logic-based controller     mathematical modeling    

Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor

Youneng TANG, Michal ZIV-EL, Chen ZHOU, Jung Hun SHIN, Chang Hoon AHN, Bruce E. RITTMANN, Kerry MEYER, Daniel CANDELARIA, David FRIESE, Ryan OVERSTREET, Rick SCOTT,

《环境科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 280-285 doi: 10.1007/s11783-010-0235-9

摘要: A long-term pilot-scale H-based membrane biofilm reactor (MBfR) was tested for removal of nitrate from actual groundwater. A key feature of this second-generation pilot MBfR is that it employed lower cost polyester hollow fibers and still achieved high loading rate. The steady-state maximum nitrate surface loading at which the effluent nitrate and nitrite concentrations were below the Maximum Contaminant Level (MCL) was at least 5.9 g·N·(m·d), which corresponds to a maximum volumetric loading of at least 7.7 kg·N·(m·d) . The steady-state maximum nitrate surface area loading was higher than the highest nitrate surface loading reported in the first-generation MBfRs using composite fibers (2.6 g·N·(m·d)). This work also evaluated the H-utilization efficiency in MBfR. The measured H supply rate was only slightly higher than the stoichiometric H-utilization rate. Thus, H utilization was controlled by diffusion and was close to 100% efficiency, as long as biofilm accumulated on the polyester-fiber surface and the fibers had no leaks.

关键词: denitrification     groundwater treatment     hydrogen     membrane biofilm reactor (MBfR)     polyester fiber    

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 4-17 doi: 10.1007/s11705-020-1933-x

摘要: This review article summarizes the key published research on the topic of bio-oil upgrading using catalytic and non-catalytic supercritical fluid (SCF) conditions. The precious metal catalysts Pd, Ru and Pt on various supports are frequently chosen for catalytic bio-oil upgrading in SCFs. This is reportedly due to their favourable catalytic activity during the process including hydrotreating, hydrocracking, and esterification, which leads to improvements in liquid yield, heating value, and pH of the upgraded bio-oil. Due to the costs associated with precious metal catalysts, some researchers have opted for non-precious metal catalysts such as acidic HZSM-5 which can promote esterification in supercritical ethanol. On the other hand, SCFs have been effectively used to upgrade crude bio-oil without a catalyst. Supercritical methanol, ethanol, and water are most commonly used and demonstrate catalyst like activities such as facilitating esterification reactions and reducing solid yield by alcoholysis and hydrolysis, respectively.

关键词: bio-oil     upgrading     supercritical     review    

Latest research progress for LBE coolant reactor of China initiative accelerator driven system project

《能源前沿(英文)》 2021年 第15卷 第4期   页码 810-831 doi: 10.1007/s11708-021-0760-1

摘要: China’s accelerator driven subcritical system (ADS) development has made significant progress during the past decade. With the successful construction and operation of the international prototype of ADS superconducting proton linac, the lead-based critical/subcritical zero-power facility VENUS-II and the comprehensive thermal-hydraulic and material test facilities for LBE (lead bismuth eutectic) coolant, China is playing a pivotal role in advanced steady-state operations toward the next step, the ADS project. The China initiative Accelerator Driven System (CiADS) is the next facility for China’s ADS program, aimed to bridge the gaps between the ADS experiment and the LBE cooled subcritical reactor. The total power of the CiADS will reach 10 MW. The CiADS engineering design was approved by Chinese government in 2018. Since then, the CiADS project has been fully transferred to the construction application stage. The subcritical reactor is an important part of the whole CiADS project. Currently, a pool-type LBE cooled fast reactor is chosen as the subcritical reactor of the CiADS. Physical and thermal experiments and software development for LBE coolant were conducted simultaneously to support the design and construction of the CiADS LBE-cooled subcritical reactor. Therefore, it is necessary to introduce the efforts made in China in the LBE-cooled fast reactor to provide certain supporting data and reference solutions for further design and development for ADS. Thus, the roadmap of China’s ADS, the development process of the CiADS, the important design of the current CiADS subcritical reactor, and the efforts to build the LBE-cooled fast reactor are presented.

关键词: LBE (lead bismuth eutectic) coolant reactor     China initiative Accelerator Driven System (CiADS) project     research progress    

An old issue and a new challenge for nuclear reactor safety

F. D’AURIA

《能源前沿(英文)》 2021年 第15卷 第4期   页码 854-859 doi: 10.1007/s11708-021-0729-0

摘要: Nuclear reactor safety (NRS) and the branch accident analysis (AA) constitute proven technologies: these are based on, among the other things, long lasting research and operational experience in the area of water cooled nuclear reactors (WCNR). Large break loss of coolant accident (LBLOCA) has been, so far, the orienting scenario within AA and a basis for the design of reactors. An incomplete vision for those technologies during the last few years is as follows: Progress in fundamentals was stagnant, namely in those countries where the WCNR were designed. Weaknesses became evident, noticeably in relation to nuclear fuel under high burn-up. Best estimate plus uncertainty (BEPU) techniques were perfected and available for application. Electronic and informatics systems were in extensive use and their impact in case of accident becomes more and more un-checked (however, quite irrelevant in case of LBLOCA). The time delay between technological discoveries and applications was becoming longer. The present paper deals with the LBLOCA that is inserted into the above context. Key conclusion is that regulations need suitable modification, rather than lowering the importance and the role of LBLOCA. Moreover, strengths of emergency core cooling system (ECCS) and containment need a tight link.

关键词: large break loss of coolant accident (LBLOCA)     nuclear reactor safety (NRS)     licensing perspectives     basis for design of water cooled nuclear reactors (WCNR)    

标题 作者 时间 类型 操作

Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for

期刊论文

面向绿色化工应用的陶瓷催化膜反应器的设计与制备

张广儒, 金万勤, 徐南平

期刊论文

Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich

Rongchang WANG, Xinmin ZHAN, Yalei ZHANG, Jianfu ZHAO

期刊论文

Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactorvia the catalytic chemical vapor deposition process

Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard

期刊论文

Removal of dissolved oxygen from water using a Pd-resin based catalytic reactor

Wenxin SHI, Chongwei CUI, Liye ZHAO, Shuili YU, Xia YUN

期刊论文

Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor

期刊论文

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasmareactor

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

期刊论文

Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aeratedbiofilm reactor

Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li

期刊论文

Hydroxyl radical intensified Cu

Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing

期刊论文

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO

Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE,Hongxing DAI

期刊论文

A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor

Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG

期刊论文

Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor

Youneng TANG, Michal ZIV-EL, Chen ZHOU, Jung Hun SHIN, Chang Hoon AHN, Bruce E. RITTMANN, Kerry MEYER, Daniel CANDELARIA, David FRIESE, Ryan OVERSTREET, Rick SCOTT,

期刊论文

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

期刊论文

Latest research progress for LBE coolant reactor of China initiative accelerator driven system project

期刊论文

An old issue and a new challenge for nuclear reactor safety

F. D’AURIA

期刊论文